Infraslow EEG activity modulates cortical excitability in postanoxic encephalopathy.

نویسندگان

  • Michel J A M van Putten
  • Marleen C Tjepkema-Cloostermans
  • Jeannette Hofmeijer
چکیده

Infraslow activity represents an important component of physiological and pathological brain function. We study infraslow activity (<0.1 Hz) in 41 patients with postanoxic coma after cardiac arrest, including the relationship between infraslow activity and EEG power in the 3-30 Hz range, using continuous full-band scalp EEG. In all patients, infraslow activity (0.015-0.06 Hz) was present, irrespective of neurological outcome or EEG activity in the conventional frequency bands. In two patients, low-amplitude (10-30 μV) infraslow activity was present while the EEG showed no rhythmic activity above 0.5 Hz. In 13/15 patients with a good outcome and 20/26 patients with a poor one, EEG power in the 3-30 Hz frequency range was correlated with the phase of infraslow activity, quantified by the modulation index. In 9/14 patients with burst-suppression with identical bursts, bursts appeared in clusters, phase-locked to the infraslow oscillations. This is substantiated by a simulation of burst-suppression in a minimal computational model. Infraslow activity is preserved in postanoxic encephalopathy and modulates cortical excitability. The strongest modulation is observed in patients with severe postanoxic encephalopathy and burst-suppression with identical bursts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans.

Our ability to perceive weak signals is correlated among consecutive trials and fluctuates slowly over time. Although this "streaking effect" has been known for decades, the underlying neural network phenomena have remained largely unidentified. We examined the dynamics of human behavioral performance and its correlation with infraslow (0.01-0.1 Hz) fluctuations in ongoing brain activity. Full-...

متن کامل

Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep.

Human cortical activity has been intensively examined at frequencies ranging from 0.5 Hz to several hundred Hz. Recent studies have, however, reported also infraslow fluctuations in neuronal population activity, magnitude of electroencephalographic oscillations, discrete sleep events, as well as in the occurrence of interictal events. Here we use direct current electroencephalography to demonst...

متن کامل

Spontaneous Infraslow Fluctuations Modulate Hippocampal EPSP-PS Coupling

Extensive trial-to-trial variability is a hallmark of most behavioral, cognitive, and physiological processes. Spontaneous brain activity (SBA), a ubiquitous phenomenon that coordinates levels and patterns of neuronal activity throughout the brain, may contribute to this variability by dynamically altering neuronal excitability. In freely-behaving male rats, we observed extensive variability of...

متن کامل

Infraslow Electroencephalographic and Dynamic Resting State Network Activity

A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (<1 Hz) has been little studied. Previously, work in rodents showed that infraslow local field potentials play a role in functio...

متن کامل

Mesoscale infraslow spontaneous membrane potential fluctuations recapitulate high-frequency activity cortical motifs.

Neuroimaging of spontaneous, resting-state infraslow (<0.1 Hz) brain activity has been used to reveal the regional functional organization of the brain and may lead to the identification of novel biomarkers of neurological disease. However, these imaging studies generally rely on indirect measures of neuronal activity and the nature of the neuronal activity correlate remains unclear. Here we sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 113 9  شماره 

صفحات  -

تاریخ انتشار 2015